Friday, June 7, 2019

XENON Dark Matter Project

Dark-matter detector observes exotic nuclear decay
CAEN and the XENON Collaboration have been pioneers in the fully Digital Data Acquisition and Pulse Processing for Dark Matter research. A longstanding, prolific collaboration that keeps on delivering important science results and is ready for future challenges.

What is XENON1T Experiment
XENON experiment is a 3500kg liquid xenon detector to search for the elusive Dark Matter – construction of the next phase, XENON1T, started in Hall B of the Gran Sasso National Laboratory in 2014. The detector contains 3.5 tons of ultra radio-pure liquid Xenon, and has a fiducial volume of about 2 tons. The detector is housed in a 10 m water tank that serves as a muon veto. The TPC is 1 m in diameter and 1 m in height. The predicted sensitivity at 50 GeV/c2 is 2.0×10−47 cm2. This is 100x lower than the current limit published for XENON100.

CAEN V1724 14 bit ADCs with 100 MHz sampling frequency and 40 MHz input bandwidth were used in XENON100 and used again in XENON1T but in this later stage the system has been upgraded to handle a larger amount of data. This lead to a rather short development time since old systems and software (also for data storage and data processing) can be largely re-used.

In XENON100, CAEN increased the maximum DAQ rate by more than one order of magnitude compared to XENON10 – although the drift length was doubled and the number of channels increased by a factor 2.7 – by using an online data reduction technique developed in cooperation with CAEN. This FPGA based method is basically rejecting all baseline between peaks and reduces the amount of data to be transferred and stored dramatically. However, the algorithm is still very simple. In cooperation with CAEN, we will exploit all possibilities to reduce the data size even further.

Subscribe to eNewsTronix